Software Defined User Centric Adaptive Traffic Management

KNOM2016 Tutorial 2016. 5. 12

> Taesang Choi ETRI

Talk Outline

- Challenges & Requirements
- Available Proposals
 - Expressing User Preferences with Network Cookies
 - P4-based In-Network Telemetry
 - ACORD (Analytics for Central Office Re-architected as a Data Center)
 - CLONA (Cross Layer Open Networking with Analytics)
 - TSaaS (Time-Shift as a Service)
 - OPEN-TAM (Open Traffic Analysis and Management) and its extension
- Suggestion for Related Research

Who controls your network access?

What if we let users decide?

Shows direction, traffic status, travel time, alternatives in real-time

1.0 mi

0.4 mi

You can boost your driving by accepting this "faster route now available" option

Boost v2 : Fast-Lane for home networks

- Deployed in ~300 homes (Google employees)
- Boost this tab / Always Boost this website
- One Boost lasts for one hour
- Last Boost wins
- WMM + throttling other traffic

Zero-rating

What do users want to zero-rate?

Challenges / Key Requirements

- Applications Perspective
 - Blind to network status
 - Want to get differentiated services whenever possible
 - Bind to static service options provided by the Internet/Content Service Providers
 - No available mechanisms to apply user preferences
- Carrier Perspective
 - Blind to user preference
 - But need to meet customer care requirements
 - Network resource optimization
 - Fairness (network neutrality)
 - No mechanism to access user behavior and application, ISP & CSP resource status
 - No dynamic feedback loop to its resource status into user/application/ISP/CSP
- Internet/Content Service Provider Perspective
 - Blind to application/network status
 - Want to build various elastic BMs to meet diverse customer's preferences
 - No mechanism to access user behavior, application and network status
- Common Challenges
 - Open programmability to access behavior and resource status
 - Open interfaces for dynamic feedback loop

Available Proposals

Source: Yiannis Yiakoumis, Standford Univ., 2015. 11.

Solution Requirements

- Simple & expressive
- Deployable
- Respect Trust (accountability, authentication)

What does a cookie look-like?

Cookie : Unique + Use-Once + Signed

Cookie Descriptor

- ID : unique look-up identifier
- Key: key to generate a MAC (Message Authentication Code)
- Attributes : metadata for when/how to use a cookie (e.g. expiration, granularity)

What does a cookie look-like?

Generation

How to insert a cookie?

- Who
 - Cookie Engine (e.g. Chrome, OS)
 - Application (e.g. Netflix, Spotify)
- When
 - When the user wants
 - Application-dependent
 - Cookie attributes (SSID/cellular, target domain)
- Where
 -anywhere we can put a few extra bits
 - HTTP header
 - SSL/TLS extension
 - TCP Long-Options
 - IPv6 extension header
 - QUIC extension

Putting it all together...

1. Discover Cookie service and acquire cookie descriptors

- 2. Generate unique, use-once, signed *cookies*
- 3. Append them to desired traffic (HTTP header, TLS extension, TCP, ...)
- 4. Match in network

P4-based In-Network Telemetry

ACORD Platform

XOS Analytics Framework

ACORD

- Meter agnostic instrumentation framework using Ceilometer with Query API interface
- Low Hanging static meters from compute, ONOS, OLT, CPE, BNG
- Integrate Ceilometer into XOS as a scalable multi-tenant service
- Operator Dashboard visualization
- Performance study (Evaluate the framework in bandwidth intensive environments like Mobility)
- Pub/Sub API interface
- Dynamic control [ON/OFF] meters
- Richer sensors/meters (from Broadcom, OLT GPON...etc)
- Candidate Analytics Use-cases/Apps
 - Auto Scaling
 - Customer care
 - Redirecting Elephant flows in the fabric (Congestion avoidance)

Adaptive Flow Monitoring Motivation

- Default ONOS Flow Monitoring Issues
 - Default FlowRule service collects all flow information from all devices at every time interval (default 10 seconds)
 - This mechanism may cause **performance degradation issue** at each collection time in a large-scale real carrier network due to the number of switches and its associated flows (for example; WAN: ~500 Routers, ~10K ports, ~1-10M flows per port)
 - To overcome performance problem in a simple way, we can maintain collection time interval value with a large number. It then causes another critical issue: lack of accuracy
- Our proposal
 - an effective flow monitoring scheme called, Adaptive Flow Monitoring Service that can minimize collection computing overhead and provide more accurate flow statistics
 - Re-designing NewAdaptiveFlowStatCollector used in OpenFlowRuleProvider for each corresponding switch
 - Extended StoredFlowEntryWithType from StoredFlowEntry
 - Divides FlowEntries into four groups, i.e., IMMEDIATE_FLOW, SHORT_FLOW, MID_FLOW, and LONG_FLOW groups
 - And uses four time intervals, i.e., SHORT_POLL_INTERAVAL, MID_POLL_INTERVAL, LONG_POLL_INTERVAL, ENTIRE_POLL_INTERVAL

Selective-DPI Motivation

- Default ONOS Application Monitoring Issues
 - Current ONOS flow can be classified and selected by lower-level FlowSelection criteria based on FlowRule entry (eg., ports, ether_type, vlan_id, 5-tuple, etc.)
 - There is no application classification service for ONOS data plane user-data
 - We proposed to add a **Selective DPI service** that can filter data plane user-data from controller traffic and classify them with application level granularity by using a open source DPI s/w

OPEN-TAM: DPI Architecture & Use Case

Open Issues for Research

- Some Main Issues to be addressed in research are:
 - How to collect user preferences and resource? (statically, programmably, allow external access or not, etc.)
 - How to carry user preferences? (via cookies, open access API, etc.)
 - How to exchange user preferences? (via protocol (distributed), pull&push (centralized))
 - How to exchange resource status information between customers and providers?
 - How to generate control policies? (statically, dynamically, or autonomically)
 - How to enforce control policies? (in-line embedded in a protocol, centralized by a logically global controller)
 - Can user be involved in control policy enforcement?
 - Is user terminals entities to be controlled as well?

Thank You

Q&A choits@etri.re.kr